министерство просвещения российской федерации

МАОУ СОШ № 1 им. Н.И. Кондратенко

УТВЕРЖДЕНО

Директор

И.И.Карякина Протокол №1 от «29» августа 2025 г.

РАБОЧАЯ ПРОГРАММА

(ID 1621916)

учебного предмета «Физика. Базовый уровень»

для обучающихся 10-11 классов

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа по физике базового уровня на уровне среднего общего образования разработана на основе положений и требований к результатам освоения основной образовательной программы, представленных в ФГОС СОО, а также с учётом федеральной рабочей программы воспитания и концепции преподавания учебного предмета «Физика» в образовательных организациях Российской Федерации, реализующих основные образовательные программы.

Содержание программы по физике направлено на формирование естественно-научной картины мира обучающихся 10–11 классов при обучении их физике на базовом уровне на основе системно-деятельностного подхода. Программа по физике соответствует требованиям ФГОС СОО к планируемым личностным, предметным и метапредметным результатам обучения, а также учитывает необходимость реализации межпредметных связей физики с естественно-научными учебными предметами. В ней определяются основные цели изучения физики на уровне среднего общего образования, планируемые результаты освоения курса физики: личностные, метапредметные, предметные (на базовом уровне).

Программа по физике включает:

- планируемые результаты освоения курса физики на базовом уровне, в том числе предметные результаты по годам обучения;
- содержание учебного предмета «Физика» по годам обучения.

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Школьный курс физики – системообразующий для естественно-научных учебных предметов, поскольку физические законы лежат в основе процессов и явлений, изучаемых химией, биологией, физической географией И астрономией. Использование активное физических применение знаний определяет характер развитие разнообразных технологий в сфере энергетики, транспорта, освоения космоса, получения новых материалов с заданными свойствами и других. Изучение физики вносит основной вклад в формирование естественнонаучной картины мира обучающихся, в формирование умений применять научный метод познания при выполнении ими учебных исследований.

В основу курса физики для уровня среднего общего образования положен ряд идей, которые можно рассматривать как принципы его построения.

Идея целостности. В соответствии с ней курс является логически завершённым, он содержит материал из всех разделов физики, включает как вопросы классической, так и современной физики.

Идея генерализации. В соответствии с ней материал курса физики объединён вокруг физических теорий. Ведущим в курсе является формирование представлений о структурных уровнях материи, веществе и поле.

Идея гуманитаризации. Её реализация предполагает использование гуманитарного потенциала физической науки, осмысление связи развития физики с развитием общества, а также с мировоззренческими, нравственными и экологическими проблемами.

Идея прикладной направленности. Курс физики предполагает знакомство с широким кругом технических и технологических приложений изученных теорий и законов.

Идея экологизации реализуется посредством введения элементов содержания, посвящённых экологическим проблемам современности, которые связаны с развитием техники и технологий, а также обсуждения проблем рационального природопользования и экологической безопасности.

Стержневыми элементами курса физики на уровне среднего общего образования являются физические теории (формирование представлений о структуре построения физической теории, роли фундаментальных законов и принципов в современных представлениях о природе, границах применимости теорий, для описания естественно-научных явлений и процессов).

Системно-деятельностный подход в курсе физики реализуется прежде всего за счёт организации экспериментальной деятельности обучающихся. базового уровня курса физики ЭТО использование системы фронтальных кратковременных экспериментов и лабораторных работ, которые в программе по физике объединены в общий список ученических практических работ. Выделение в указанном перечне лабораторных работ, проводимых ДЛЯ контроля оценки, осуществляется участниками И образовательного процесса исходя из особенностей планирования оснащения кабинета физики. При ЭТОМ обеспечивается овладение обучающимися умениями проводить косвенные измерения, исследования зависимостей физических величин и постановку опытов по проверке предложенных гипотез.

Большое внимание уделяется решению расчётных и качественных задач. При этом для расчётных задач приоритетом являются задачи с явно заданной физической моделью, позволяющие применять изученные законы и

закономерности как из одного раздела курса, так и интегрируя знания из разных разделов. Для качественных задач приоритетом являются задания на объяснение протекания физических явлений и процессов в окружающей жизни, требующие выбора физической модели для ситуации практикоориентированного характера.

В соответствии с требованиями ФГОС СОО к материальнотехническому обеспечению учебного процесса базовый уровень курса физики на уровне среднего общего образования должен изучаться в условиях предметного кабинета физики или в условиях интегрированного кабинета предметов естественно-научного цикла. В кабинете физики должно быть необходимое лабораторное оборудование для выполнения указанных в программе по физике ученических практических работ и демонстрационное оборудование.

Демонстрационное оборудование формируется в соответствии с принципом минимальной достаточности и обеспечивает постановку перечисленных в программе по физике ключевых демонстраций для исследования изучаемых явлений и процессов, эмпирических и фундаментальных законов, их технических применений.

Лабораторное оборудование для ученических практических работ формируется в виде тематических комплектов и обеспечивается в расчёте одного комплекта на двух обучающихся. Тематические комплекты лабораторного оборудования должны быть построены на комплексном использовании аналоговых и цифровых приборов, а также компьютерных измерительных систем в виде цифровых лабораторий.

Основными целями изучения физики в общем образовании являются:

- формирование интереса и стремления обучающихся к научному изучению природы, развитие их интеллектуальных и творческих способностей;
- развитие представлений о научном методе познания и формирование исследовательского отношения к окружающим явлениям;
- формирование научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;
- формирование умений объяснять явления с использованием физических знаний и научных доказательств;
- формирование представлений о роли физики для развития других естественных наук, техники и технологий.

Достижение этих целей обеспечивается решением следующих задач в процессе изучения курса физики на уровне среднего общего образования:

- приобретение ინ обших физических системы знаний закономерностях, законах, теориях, включая механику, молекулярную физику, электродинамику, квантовую физику и элементы астрофизики;
- формирование умений применять теоретические знания для объяснения физических явлений в природе и для принятия практических решений в повседневной жизни;
- освоение способов решения различных задач с явно заданной физической моделью, задач, подразумевающих самостоятельное создание физической модели, адекватной условиям задачи;
- понимание физических основ и принципов действия технических устройств и технологических процессов, их влияния на окружающую среду;
- овладение методами самостоятельного планирования и проведения физических экспериментов, анализа и интерпретации информации, определения достоверности полученного результата;
- создание условий для развития умений проектно-исследовательской, творческой деятельности.

На изучение физики (базовый уровень) на уровне среднего общего образования отводится 136 часов: в 10 классе – 68 часов (2 часа в неделю), в 11 классе – 68 часов (2 часа в неделю).

Предлагаемый в программе по физике перечень лабораторных и практических работ является рекомендованным, учитель делает выбор проведения лабораторных работ и опытов с учётом индивидуальных особенностей обучающихся.

СОДЕРЖАНИЕ ОБУЧЕНИЯ

10 КЛАСС

Раздел 1. Физика и методы научного познания

Физика – наука о природе. Научные методы познания окружающего мира. Роль эксперимента и теории в процессе познания природы. Эксперимент в физике.

Моделирование физических явлений и процессов. Научные гипотезы. Физические законы и теории. Границы применимости физических законов. Принцип соответствия.

Роль и место физики в формировании современной научной картины мира, в практической деятельности людей.

Демонстрации

Аналоговые и цифровые измерительные приборы, компьютерные датчики.

Раздел 2. Механика

Тема 1. Кинематика

Механическое движение. Относительность механического движения. Система отсчёта. Траектория.

Перемещение, скорость (средняя скорость, мгновенная скорость) и ускорение материальной точки, их проекции на оси системы координат. Сложение перемещений и сложение скоростей.

Равномерное и равноускоренное прямолинейное движение. Графики зависимости координат, скорости, ускорения, пути и перемещения материальной точки от времени.

Свободное падение. Ускорение свободного падения.

Криволинейное движение. Движение материальной точки по окружности с постоянной по модулю скоростью. Угловая скорость, линейная скорость. Период и частота обращения. Центростремительное ускорение.

Технические устройства и практическое применение: спидометр, движение снарядов, цепные и ремённые передачи.

Демонстрации

Модель системы отсчёта, иллюстрация кинематических характеристик движения.

Преобразование движений с использованием простых механизмов.

Падение тел в воздухе и в разреженном пространстве.

Наблюдение движения тела, брошенного под углом к горизонту и горизонтально.

Измерение ускорения свободного падения.

Направление скорости при движении по окружности.

Ученический эксперимент, лабораторные работы

Изучение неравномерного движения с целью определения мгновенной скорости.

Исследование соотношения между путями, пройденными телом за последовательные равные промежутки времени при равноускоренном движении с начальной скоростью, равной нулю.

Изучение движения шарика в вязкой жидкости.

Изучение движения тела, брошенного горизонтально.

Тема 2. Динамика

Принцип относительности Галилея. Первый закон Ньютона. Инерциальные системы отсчёта.

Масса тела. Сила. Принцип суперпозиции сил. Второй закон Ньютона для материальной точки. Третий закон Ньютона для материальных точек.

Закон всемирного тяготения. Сила тяжести. Первая космическая скорость.

Сила упругости. Закон Гука. Вес тела.

Трение. Виды трения (покоя, скольжения, качения). Сила трения. Сухое трение. Сила трения скольжения и сила трения покоя. Коэффициент трения. Сила сопротивления при движении тела в жидкости или газе.

Поступательное и вращательное движение абсолютно твёрдого тела.

Момент силы относительно оси вращения. Плечо силы. Условия равновесия твёрдого тела.

Технические устройства и практическое применение: подшипники, движение искусственных спутников.

Демонстрации

Явление инерции.

Сравнение масс взаимодействующих тел.

Второй закон Ньютона.

Измерение сил.

Сложение сил.

Зависимость силы упругости от деформации.

Невесомость. Вес тела при ускоренном подъёме и падении.

Сравнение сил трения покоя, качения и скольжения.

Условия равновесия твёрдого тела. Виды равновесия.

Ученический эксперимент, лабораторные работы

Изучение движения бруска по наклонной плоскости.

Исследование зависимости сил упругости, возникающих в пружине и резиновом образце, от их деформации.

Исследование условий равновесия твёрдого тела, имеющего ось вращения.

Тема 3. Законы сохранения в механике

Импульс материальной точки (тела), системы материальных точек. Импульс силы и изменение импульса тела. Закон сохранения импульса. Реактивное движение.

Работа силы. Мощность силы.

Кинетическая энергия материальной точки. Теорема об изменении кинетической энергии.

Потенциальная энергия. Потенциальная энергия упруго деформированной пружины. Потенциальная энергия тела вблизи поверхности Земли.

Потенциальные и непотенциальные силы. Связь работы непотенциальных сил с изменением механической энергии системы тел. Закон сохранения механической энергии.

Упругие и неупругие столкновения.

Технические устройства и практическое применение: водомёт, копёр, пружинный пистолет, движение ракет.

Демонстрации

Закон сохранения импульса.

Реактивное движение.

Переход потенциальной энергии в кинетическую и обратно.

Ученический эксперимент, лабораторные работы

Изучение абсолютно неупругого удара с помощью двух одинаковых нитяных маятников.

Исследование связи работы силы с изменением механической энергии тела на примере растяжения резинового жгута.

Раздел 3. Молекулярная физика и термодинамика

Тема 1. Основы молекулярно-кинетической теории

молекулярно-кинетической положения теории И ИХ опытное Характер обоснование. Броуновское движение. Диффузия. движения И взаимодействия частиц вещества. Модели строения газов, жидкостей и твёрдых тел и объяснение свойств вещества на основе этих моделей. Масса и размеры молекул. Количество вещества. Постоянная Авогадро.

Тепловое равновесие. Температура и её измерение. Шкала температур Цельсия.

Модель идеального газа. Основное уравнение молекулярно-кинетической теории идеального газа. Абсолютная температура как мера средней кинетической энергии теплового движения частиц газа. Шкала температур Кельвина. Газовые законы. Уравнение Менделеева–Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества. Графическое представление изопроцессов: изотерма, изохора, изобара.

Технические устройства и практическое применение: термометр, барометр.

Демонстрации

Опыты, доказывающие дискретное строение вещества, фотографии молекул органических соединений.

Опыты по диффузии жидкостей и газов.

Модель броуновского движения.

Модель опыта Штерна.

Опыты, доказывающие существование межмолекулярного взаимодействия.

Модель, иллюстрирующая природу давления газа на стенки сосуда.

Опыты, иллюстрирующие уравнение состояния идеального газа, изопроцессы.

Ученический эксперимент, лабораторные работы

Определение массы воздуха в классной комнате на основе измерений объёма комнаты, давления и температуры воздуха в ней.

Исследование зависимости между параметрами состояния разреженного газа.

Тема 2. Основы термодинамики

Термодинамическая система. Внутренняя энергия термодинамической системы и способы её изменения. Количество теплоты и работа. Внутренняя энергия одноатомного идеального газа. Виды теплопередачи: теплопроводность, конвекция, излучение. Удельная теплоёмкость вещества. Количество теплоты при теплопередаче.

Понятие об адиабатном процессе. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам. Графическая интерпретация работы газа.

Второй закон термодинамики. Необратимость процессов в природе.

Тепловые машины. Принципы действия тепловых машин. Преобразования энергии в тепловых машинах. Коэффициент полезного действия тепловой машины. Цикл Карно и его коэффициент полезного действия. Экологические проблемы теплоэнергетики.

Технические устройства и практическое применение: двигатель внутреннего сгорания, бытовой холодильник, кондиционер.

Демонстрации

Изменение внутренней энергии тела при совершении работы: вылет пробки из бутылки под действием сжатого воздуха, нагревание эфира в латунной трубке путём трения (видеодемонстрация).

Изменение внутренней энергии (температуры) тела при теплопередаче.

Опыт по адиабатному расширению воздуха (опыт с воздушным огнивом).

Модели паровой турбины, двигателя внутреннего сгорания, реактивного двигателя.

Ученический эксперимент, лабораторные работы

Измерение удельной теплоёмкости.

Тема 3. Агрегатные состояния вещества. Фазовые переходы

Парообразование и конденсация. Испарение и кипение. Абсолютная и относительная влажность воздуха. Насыщенный пар. Удельная теплота парообразования. Зависимость температуры кипения от давления.

Твёрдое тело. Кристаллические и аморфные тела. Анизотропия свойств кристаллов. Жидкие кристаллы. Современные материалы. Плавление и кристаллизация. Удельная теплота плавления. Сублимация.

Уравнение теплового баланса.

Технические устройства и практическое применение: гигрометр и психрометр, калориметр, технологии получения современных материалов, в том числе наноматериалов, и нанотехнологии.

Демонстрации

Свойства насыщенных паров.

Кипение при пониженном давлении.

Способы измерения влажности.

Наблюдение нагревания и плавления кристаллического вещества.

Демонстрация кристаллов.

Ученический эксперимент, лабораторные работы

Измерение относительной влажности воздуха.

Раздел 4. Электродинамика

Тема 1. Электростатика

Электризация тел. Электрический заряд. Два вида электрических зарядов. Проводники, диэлектрики и полупроводники. Закон сохранения электрического заряда.

Взаимодействие зарядов. Закон Кулона. Точечный электрический заряд. Электрическое поле. Напряжённость электрического поля. Принцип суперпозиции электрических полей. Линии напряжённости электрического поля.

Работа сил электростатического поля. Потенциал. Разность потенциалов. Проводники и диэлектрики в электростатическом поле. Диэлектрическая проницаемость.

Электроёмкость. Конденсатор. Электроёмкость плоского конденсатора. Энергия заряженного конденсатора.

Технические устройства и практическое применение: электроскоп, электрометр, электростатическая защита, заземление электроприборов, конденсатор, копировальный аппарат, струйный принтер.

Демонстрации

Устройство и принцип действия электрометра.

Взаимодействие наэлектризованных тел.

Электрическое поле заряженных тел.

Проводники в электростатическом поле.

Электростатическая защита.

Диэлектрики в электростатическом поле.

Зависимость электроёмкости плоского конденсатора от площади пластин, расстояния между ними и диэлектрической проницаемости.

Энергия заряженного конденсатора.

Ученический эксперимент, лабораторные работы

Измерение электроёмкости конденсатора.

Тема 2. Постоянный электрический ток. Токи в различных средах

Электрический ток. Условия существования электрического тока. Источники тока. Сила тока. Постоянный ток.

Напряжение. Закон Ома для участка цепи.

Электрическое сопротивление. Удельное сопротивление вещества. Последовательное, параллельное, смешанное соединение проводников.

Работа электрического тока. Закон Джоуля-Ленца. Мощность электрического тока.

Электродвижущая сила и внутреннее сопротивление источника тока. Закон Ома для полной (замкнутой) электрической цепи. Короткое замыкание.

Электронная проводимость твёрдых металлов. Зависимость сопротивления металлов от температуры. Сверхпроводимость.

Электрический ток в вакууме. Свойства электронных пучков.

Полупроводники. Собственная и примесная проводимость полупроводников. Свойства р—n-перехода. Полупроводниковые приборы.

Электрический ток в растворах и расплавах электролитов. Электролитическая диссоциация. Электролиз.

Электрический ток в газах. Самостоятельный и несамостоятельный разряд. Молния. Плазма.

Технические устройства и практическое применение: амперметр, вольтметр, реостат, источники тока, электронагревательные приборы, электроосветительные приборы, термометр сопротивления, вакуумный диод, термисторы и фоторезисторы, полупроводниковый диод, гальваника.

Демонстрации

Измерение силы тока и напряжения.

Зависимость сопротивления цилиндрических проводников от длины, площади поперечного сечения и материала.

Смешанное соединение проводников.

Прямое измерение электродвижущей силы. Короткое замыкание гальванического элемента и оценка внутреннего сопротивления.

Зависимость сопротивления металлов от температуры.

Проводимость электролитов.

Искровой разряд и проводимость воздуха.

Односторонняя проводимость диода.

Ученический эксперимент, лабораторные работы

Изучение смешанного соединения резисторов.

Измерение электродвижущей силы источника тока и его внутреннего сопротивления.

Наблюдение электролиза.

Межпредметные связи

Изучение курса физики базового уровня в 10 классе осуществляется с учётом содержательных межпредметных связей с курсами математики, биологии, химии, географии и технологии.

Межпредметные понятия, связанные с изучением методов научного познания: явление, научный факт, гипотеза, физическая величина, закон, теория, наблюдение, эксперимент, моделирование, модель, измерение.

Математика: решение системы уравнений, линейная функция, парабола, гипербола, их графики и свойства, тригонометрические функции: синус, косинус, тангенс, котангенс, основное тригонометрическое тождество, векторы и их проекции на оси координат, сложение векторов.

Биология: механическое движение в живой природе, диффузия, осмос, теплообмен живых организмов (виды теплопередачи, тепловое равновесие), электрические явления в живой природе.

Химия: дискретное строение вещества, строение атомов и молекул, моль вещества, молярная масса, тепловые свойства твёрдых тел, жидкостей и газов, электрические свойства металлов, электролитическая диссоциация, гальваника.

География: влажность воздуха, ветры, барометр, термометр.

Технология: преобразование движений с использованием механизмов, учёт трения в технике, подшипники, использование закона сохранения импульса в технике (ракета, водомёт и другие), двигатель внутреннего сгорания, паровая турбина, бытовой холодильник, кондиционер, технологии получения современных материалов, в том числе наноматериалов, и нанотехнологии, электростатическая защита, заземление электроприборов, ксерокс, струйный принтер, электронагревательные приборы, электроосветительные приборы, гальваника.

11 КЛАСС

Раздел 4. Электродинамика

Тема 3. Магнитное поле. Электромагнитная индукция

Постоянные магниты. Взаимодействие постоянных магнитов. Магнитное поле. Вектор магнитной индукции. Принцип суперпозиции магнитных полей. Линии магнитной индукции. Картина линий магнитной индукции поля постоянных магнитов.

Магнитное поле проводника с током. Картина линий индукции магнитного поля длинного прямого проводника и замкнутого кольцевого проводника, катушки с током. Опыт Эрстеда. Взаимодействие проводников с током.

Сила Ампера, её модуль и направление.

Сила Лоренца, её модуль и направление. Движение заряженной частицы в однородном магнитном поле. Работа силы Лоренца.

Явление электромагнитной индукции. Поток вектора магнитной индукции. Электродвижущая сила индукции. Закон электромагнитной индукции Фарадея.

Вихревое электрическое поле. Электродвижущая сила индукции в проводнике, движущемся поступательно в однородном магнитном поле.

Правило Ленца.

Индуктивность. Явление самоиндукции. Электродвижущая сила самоиндукции.

Энергия магнитного поля катушки с током.

Электромагнитное поле.

Технические устройства и практическое применение: постоянные магниты, электромагниты, электродвигатель, ускорители элементарных частиц, индукционная печь.

Демонстрации

Опыт Эрстеда.

Отклонение электронного пучка магнитным полем.

Линии индукции магнитного поля.

Взаимодействие двух проводников с током.

Сила Ампера.

Действие силы Лоренца на ионы электролита.

Явление электромагнитной индукции.

Правило Ленца.

Зависимость электродвижущей силы индукции от скорости изменения магнитного потока.

Явление самоиндукции.

Ученический эксперимент, лабораторные работы

Изучение магнитного поля катушки с током.

Исследование действия постоянного магнита на рамку с током.

Исследование явления электромагнитной индукции.

Раздел 5. Колебания и волны

Тема 1. Механические и электромагнитные колебания

Колебательная система. Свободные механические колебания. Гармонические колебания. Период, частота, амплитуда и фаза колебаний. Пружинный маятник. Математический маятник. Уравнение гармонических колебаний. Превращение энергии при гармонических колебаниях.

Колебательный контур. Свободные электромагнитные колебания в идеальном колебательном контуре. Аналогия между механическими и электромагнитными колебаниями. Формула Томсона. Закон сохранения энергии в идеальном колебательном контуре.

Представление о затухающих колебаниях. Вынужденные механические колебания. Резонанс. Вынужденные электромагнитные колебания.

Переменный ток. Синусоидальный переменный ток. Мощность переменного тока. Амплитудное и действующее значение силы тока и напряжения.

Трансформатор. Производство, передача и потребление электрической энергии. Экологические риски при производстве электроэнергии. Культура использования электроэнергии в повседневной жизни.

Технические устройства и практическое применение: электрический звонок, генератор переменного тока, линии электропередач.

Демонстрации

Исследование параметров колебательной системы (пружинный или математический маятник).

Наблюдение затухающих колебаний.

Исследование свойств вынужденных колебаний.

Наблюдение резонанса.

Свободные электромагнитные колебания.

Осциллограммы (зависимости силы тока и напряжения от времени) для электромагнитных колебаний.

Резонанс при последовательном соединении резистора, катушки индуктивности и конденсатора.

Модель линии электропередачи.

Ученический эксперимент, лабораторные работы

Исследование зависимости периода малых колебаний груза на нити от длины нити и массы груза.

Исследование переменного тока в цепи из последовательно соединённых конденсатора, катушки и резистора.

Тема 2. Механические и электромагнитные волны

Механические волны, условия распространения. Период. Скорость распространения и длина волны. Поперечные и продольные волны. Интерференция и дифракция механических волн.

Звук. Скорость звука. Громкость звука. Высота тона. Тембр звука.

Электромагнитные волны. Условия излучения электромагнитных волн. Взаимная ориентация векторов E, B, V в электромагнитной волне. Свойства электромагнитных волн: отражение, преломление, поляризация, дифракция, интерференция. Скорость электромагнитных волн.

Шкала электромагнитных волн. Применение электромагнитных волн в технике и быту.

Принципы радиосвязи и телевидения. Радиолокация.

Электромагнитное загрязнение окружающей среды.

Технические устройства и практическое применение: музыкальные инструменты, ультразвуковая диагностика в технике и медицине, радар, радиоприёмник, телевизор, антенна, телефон, СВЧ-печь.

Демонстрации

Образование и распространение поперечных и продольных волн.

Колеблющееся тело как источник звука.

Наблюдение отражения и преломления механических волн.

Наблюдение интерференции и дифракции механических волн.

Звуковой резонанс.

Наблюдение связи громкости звука и высоты тона с амплитудой и частотой колебаний.

Исследование свойств электромагнитных волн: отражение, преломление, поляризация, дифракция, интерференция.

Тема 3. Оптика

Геометрическая оптика. Прямолинейное распространение света в однородной среде. Луч света. Точечный источник света.

Отражение света. Законы отражения света. Построение изображений в плоском зеркале.

Преломление света. Законы преломления света. Абсолютный показатель преломления. Полное внутреннее отражение. Предельный угол полного внутреннего отражения.

Дисперсия света. Сложный состав белого света. Цвет.

Собирающие и рассеивающие линзы. Тонкая линза. Фокусное расстояние и оптическая сила тонкой линзы. Построение изображений в собирающих и рассеивающих линзах. Формула тонкой линзы. Увеличение, даваемое линзой.

Пределы применимости геометрической оптики.

Волновая оптика. Интерференция света. Когерентные источники. Условия наблюдения максимумов и минимумов в интерференционной картине от двух синфазных когерентных источников.

Дифракция света. Дифракционная решётка. Условие наблюдения главных максимумов при падении монохроматического света на дифракционную решётку.

Поляризация света.

Технические устройства и практическое применение: очки, лупа, фотоаппарат, проекционный аппарат, микроскоп, телескоп, волоконная оптика, дифракционная решётка, поляроид.

Демонстрации

Прямолинейное распространение, отражение и преломление света. Оптические приборы.

Полное внутреннее отражение. Модель световода.

Исследование свойств изображений в линзах.

Модели микроскопа, телескопа.

Наблюдение интерференции света.

Наблюдение дифракции света.

Наблюдение дисперсии света.

Получение спектра с помощью призмы.

Получение спектра с помощью дифракционной решётки.

Наблюдение поляризации света.

Ученический эксперимент, лабораторные работы

Измерение показателя преломления стекла.

Исследование свойств изображений в линзах.

Наблюдение дисперсии света.

Раздел 6. Основы специальной теории относительности

Границы применимости классической механики. Постулаты специальной теории относительности: инвариантность модуля скорости света в вакууме, принцип относительности Эйнштейна.

Относительность одновременности. Замедление времени и сокращение длины.

Энергия и импульс релятивистской частицы.

Связь массы с энергией и импульсом релятивистской частицы. Энергия покоя.

Раздел 7. Квантовая физика

Тема 1. Элементы квантовой оптики

Фотоны. Формула Планка связи энергии фотона с его частотой. Энергия и импульс фотона.

Открытие и исследование фотоэффекта. Опыты А. Г. Столетова. Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта. «Красная граница» фотоэффекта.

Давление света. Опыты П. Н. Лебедева.

Химическое действие света.

Технические устройства и практическое применение: фотоэлемент, фотодатчик, солнечная батарея, светодиод.

Демонстрации

Фотоэффект на установке с цинковой пластиной.

Исследование законов внешнего фотоэффекта.

Светодиод.

Солнечная батарея.

Тема 2. Строение атома

Модель атома Томсона. Опыты Резерфорда по рассеянию α -частиц. Планетарная модель атома. Постулаты Бора. Излучение и поглощение фотонов при переходе атома с одного уровня энергии на другой. Виды спектров. Спектр уровней энергии атома водорода.

Волновые свойства частиц. Волны де Бройля. Корпускулярно-волновой дуализм.

Спонтанное и вынужденное излучение.

Технические устройства и практическое применение: спектральный анализ (спектроскоп), лазер, квантовый компьютер.

Демонстрации

Модель опыта Резерфорда.

Определение длины волны лазера.

Наблюдение линейчатых спектров излучения.

Лазер.

Ученический эксперимент, лабораторные работы

Наблюдение линейчатого спектра.

Тема 3. Атомное ядро

Эксперименты, доказывающие сложность строения ядра. Открытие радиоактивности. Опыты Резерфорда по определению состава радиоактивного излучения. Свойства альфа-, бета-, гамма-излучения. Влияние радиоактивности на живые организмы.

Открытие протона и нейтрона. Нуклонная модель ядра Гейзенберга–Иваненко. Заряд ядра. Массовое число ядра. Изотопы.

Альфа-распад. Электронный и позитронный бета-распад. Гамма-излучение. Закон радиоактивного распада.

Энергия связи нуклонов в ядре. Ядерные силы. Дефект массы ядра.

Ядерные реакции. Деление и синтез ядер.

Ядерный реактор. Термоядерный синтез. Проблемы и перспективы ядерной энергетики. Экологические аспекты ядерной энергетики.

Элементарные частицы. Открытие позитрона.

Методы наблюдения и регистрации элементарных частиц.

Фундаментальные взаимодействия. Единство физической картины мира.

Технические устройства и практическое применение: дозиметр, камера Вильсона, ядерный реактор, атомная бомба.

Демонстрации

Счётчик ионизирующих частиц.

Ученический эксперимент, лабораторные работы

Исследование треков частиц (по готовым фотографиям).

Раздел 8. Элементы астрономии и астрофизики

Этапы развития астрономии. Прикладное и мировоззренческое значение астрономии.

Вид звёздного неба. Созвездия, яркие звёзды, планеты, их видимое движение.

Солнечная система.

Солнце. Солнечная активность. Источник энергии Солнца и звёзд. Звёзды, их основные характеристики. Диаграмма «спектральный класс — светимость». Звёзды главной последовательности. Зависимость «масса — светимость» для звёзд главной последовательности. Внутреннее строение звёзд. Современные представления о происхождении и эволюции Солнца и звёзд. Этапы жизни звёзд.

Млечный Путь – наша Галактика. Положение и движение Солнца в Галактике. Типы галактик. Радиогалактики и квазары. Чёрные дыры в ядрах галактик.

Вселенная. Расширение Вселенной. Закон Хаббла. Разбегание галактик. Теория Большого взрыва. Реликтовое излучение.

Масштабная структура Вселенной. Метагалактика.

Нерешённые проблемы астрономии.

Ученические наблюдения

Наблюдения невооружённым глазом с использованием компьютерных приложений для определения положения небесных объектов на конкретную дату: основные созвездия Северного полушария и яркие звёзды.

Наблюдения в телескоп Луны, планет, Млечного Пути.

Обобщающее повторение

Роль физики и астрономии в экономической, технологической, социальной и этической сферах деятельности человека, роль и место физики и астрономии в современной научной картине мира, роль физической теории в формировании представлений о физической картине мира, место физической картины мира в общем ряду современных естественно-научных представлений о природе.

Межпредметные связи

Изучение курса физики базового уровня в 11 классе осуществляется с учётом содержательных межпредметных связей с курсами математики, биологии, химии, географии и технологии.

Межпредметные понятия, связанные с изучением методов научного познания: явление, научный факт, гипотеза, физическая величина, закон, теория, наблюдение, эксперимент, моделирование, модель, измерение.

Математика: решение системы уравнений, тригонометрические функции: синус, косинус, тангенс, котангенс, основное тригонометрическое тождество, векторы и их проекции на оси координат, сложение векторов, производные элементарных функций, признаки подобия треугольников, определение площади плоских фигур и объёма тел.

Биология: электрические явления в живой природе, колебательные движения в живой природе, оптические явления в живой природе, действие радиации на живые организмы.

Химия: строение атомов и молекул, кристаллическая структура твёрдых тел, механизмы образования кристаллической решётки, спектральный анализ.

География: магнитные полюса Земли, залежи магнитных руд, фотосъёмка земной поверхности, предсказание землетрясений.

Технология: линии электропередач, генератор переменного тока, электродвигатель, индукционная печь, радар, радиоприёмник, телевизор, антенна, телефон, СВЧ-печь, проекционный аппарат, волоконная оптика, солнечная батарея.

Направления воспитания

Программа реализуется в единстве учебной и воспитательной деятельности школы по основным направлениям воспитания в соответствии с ФГОС:

1. Гражданское воспитание включает: создание условий для воспитания у детей активной гражданской позиции, гражданской ответственности, основанной на традиционных культурных, духовных и нравственных ценностях российского общества; развитие культуры межнационального общения; формирование приверженности идеям интернационализма, дружбы, равенства, взаимопомощи народов; воспитание уважительного отношения к национальному достоинству людей, их чувствам, религиозным убеждениям; развитие правовой и политической культуры детей, расширение конструктивного участия в принятии решений, затрагивающих их права и интересы, в том числе в различных формах самоорганизации, самоуправления, общественно значимой деятельности; развитие в детской среде ответственности, принципов коллективизма и социальной солидарности; формирование стабильной системы нравственных и смысловых установок личности, позволяющих противостоять идеологии экстремизма, национализма, ксенофобии, коррупции, дискриминации по социальным,

религиозным, расовым, национальным признакам и другим негативным социальным явлениям; разработку и реализацию программ воспитания, способствующих правовой, социальной и культурной адаптации детей, в том числе детей из семей мигрантов.

- 2. Патриотическое воспитание и формирование российской идентичности предусматривает: создание системы комплексного методического сопровождения деятельности педагогов и других работников, участвующих в воспитании подрастающего поколения, по формированию российской гражданской идентичности; формирование у детей патриотизма, чувства гордости за свою Родину, готовности к защите интересов Отечества, ответственности за будущее России на основе развития программ патриотического воспитания детей, в том числе военнопатриотического воспитания; повышение качества преподавания гуманитарных учебных предметов, обеспечивающего ориентацию обучающихся в современных общественно-политических процессах, происходящих в России и мире, также осознанную выработку собственной позиции по отношению к ним на основе знания и осмысления истории, духовных ценностей и достижений нашей страны; развитие у подрастающего поколения уважения к таким символам государства, как герб, флаг, гимн Российской Федерации, к историческим символам и памятникам Отечества; развитие поисковой и краеведческой деятельности, детского познавательного туризма.
- 3. Духовно-нравственное воспитание детей на основе российских традиционных ценностей осуществляется за счет: развития у детей нравственных чувств (чести, долга, справедливости, милосердия и дружелюбия); формирования выраженной в поведении нравственной позиции, в том числе способности к сознательному выбору добра; развития сопереживания и формирования позитивного отношения к людям, в том числе к лицам с ограниченными возможностями здоровья и инвалидам; расширения сотрудничества между государством и обществом, общественными организациями и институтами в сфере духовно-нравственного воспитания детей, в том числе традиционными религиозными общинами; содействия формированию у детей позитивных жизненных ориентиров и планов; оказания помощи детям в выработке моделей поведения в различных трудных жизненных ситуациях, в том числе проблемных, стрессовых и конфликтных.
- 4. Эстемическое воспитание предполагает: эффективное использование уникального российского культурного наследия, в том числе литературного, музыкального, художественного, театрального и кинематографического; создание равных для всех детей возможностей доступа к культурным ценностям; воспитание уважения к культуре, языкам, традициям и обычаям народов, проживающих в Российской Федерации; увеличение доступности детской литературы для семей, приобщение детей к классическим и современным высокохудожественным отечественным и мировым произведениям искусства и литературы; создание условий для доступности

музейной и театральной культуры для детей; развитие музейной и театральной педагогики; поддержку мер по созданию и распространению произведений искусства и культуры, проведению культурных мероприятий, направленных на популяризацию российских культурных, нравственных и семейных ценностей; создание и поддержку производства художественных, документальных, научнопопулярных, учебных и анимационных фильмов, направленных на нравственное, гражданско-патриотическое и общекультурное развитие детей; повышение роли библиотек, в том числе библиотек в системе образования, в приобщении к сокровищнице мировой и отечественной культуры, в том числе с использованием информационных технологий; создание условий для сохранения, поддержки и развития этнических культурных традиций и народного творчества.

- формирование культуры здоровья и 5.Физическое воспитание, эмоционального благополучия включает: формирование у подрастающего поколения ответственного отношения к своему здоровью и потребности в здоровом образе жизни; формирование в детской и семейной среде системы мотивации к активному и здоровому образу жизни, занятиям физической культурой и спортом, развитие культуры здорового питания; создание для детей, в том числе детей с ограниченными возможностями здоровья, условий для регулярных занятий физической культурой и спортом, развивающего отдыха и оздоровления, в том числе на основе развития спортивной инфраструктуры и повышения эффективности ee использования; развитие культуры безопасной наркотической жизнедеятельности, профилактику алкогольной И зависимости, табакокурения И других вредных привычек; предоставление обучающимся образовательных организаций, а также детям, занимающимся в иных организациях, физического совершенствования условий ДЛЯ на основе регулярных физкультурой и спортом в соответствии с индивидуальными способностями и детей; потенциала склонностями использование спортивной деятельности содействие профилактики асоциального поведения; проведению массовых общественно-спортивных мероприятий и привлечение к участию в них детей.
 - 6. Трудовое воспитание реализуется посредством: воспитания у детей уважения к труду и людям труда, трудовым достижениям; формирования у детей умений и навыков самообслуживания, потребности трудиться, добросовестного, ответственного и творческого отношения к разным видам трудовой деятельности, включая обучение и выполнение домашних обязанностей; развития навыков совместной работы, умения работать самостоятельно, мобилизуя необходимые ресурсы, правильно оценивая смысл и последствия своих действий; содействия профессиональному самоопределению, приобщения детей к социально значимой деятельности для осмысленного выбора профессии.
 - 7. Экологическое воспитание включает: развитие у детей и их родителей экологической культуры, бережного отношения к родной земле, природным богатствам России и мира; воспитание чувства ответственности за состояние

природных ресурсов, умений и навыков разумного природопользования, нетерпимого отношения к действиям, приносящим вред экологии.

8. Ценности научного познания подразумевают: содействие повышению привлекательности науки для подрастающего поколения, поддержку научнотехнического творчества детей; создание условий для получения детьми достоверной информации о передовых достижениях и открытиях мировой и отечественной науки, повышения заинтересованности подрастающего поколения в научных познаниях об устройстве мира и общества.

Целевые ориентиры результатов воспитания на уровне среднего общего образования.

Гражданское воспитание

Осознанно выражающий свою российскую гражданскую принадлежность (идентичность) в поликультурном, многонациональном и много конфессиональном российском обществе, в мировом сообществе.

Сознающий своё единство с народом России как источником власти и субъектом тысячелетней российской государственности, с Российским государством, ответственность за его развитие в настоящем и будущем на основе исторического просвещения, сформированного российского национального исторического сознания.

Проявляющий готовность к защите Родины, способный аргументированно отстаивать суверенитет и достоинство народа России и Российского государства, сохранять и защищать историческую правду.

Ориентированный на активное гражданское участие на основе уважения закона и правопорядка, прав и свобод сограждан.

Осознанно и деятельно выражающий неприятие любой дискриминации по социальным, национальным, расовым, религиозным признакам, проявлений

экстремизма, терроризма, коррупции, антигосударственной деятельности.

Обладающий опытом гражданской социально значимой деятельности (в ученическомсамоуправлении, волонтёрском движении, экологических, военно-патриотических и др. объединениях, акциях, программах).

Патриотическое воспитание

Выражающий свою национальную, этническую принадлежность, приверженность к родной культуре, любовь к своему народу.

Сознающий причастность к многонациональному народу Российской Федерации, Российскому Отечеству, российскую культурную идентичность.

Проявляющий деятельное ценностное отношение к историческому и культурному наследию своего и других народов России, традициям, праздникам, памятникам народов, проживающих в родной стране — России.

Проявляющий уважение к соотечественникам, проживающим за рубежом, поддерживающий их права, защиту их интересов в сохранении российской культурной идентичности.

Духовно-нравственное воспитание

Проявляющий приверженность традиционным духовно-нравственным ценностям, культуре народов России с учётом мировоззренческого, национального, религиозного самоопределения.

Действующий и оценивающий своё поведение и поступки, поведение и поступки других людей с позиций традиционных российских духовно-нравственных ценностей и норм с осознанием последствий поступков, деятельно выражающий неприятие антигуманных и асоциальных поступков, поведения, противоречащих этим ценностям.

Проявляющий уважение к жизни и достоинству каждого человека, свободе мировоззренческого выбора и самоопределения, к представителям различных этнических групп, религий народов России, их национальному достоинству и религиозным чувствам с учётом соблюдения конституционных прав и свобод всех граждан.

Понимающий и деятельно выражающий ценность межрелигиозного, межнационального согласия людей, народов в России, способный вести диалог с людьми разных национальностей, религиозной принадлежности, находить общие цели и сотрудничать для их достижения.

Ориентированный на создание устойчивой семьи на основе российских традиционных семейных ценностей; понимания брака как союза мужчины и женщины для создания семьи, рождения и воспитания в семье детей; неприятия насилия в семье, ухода от родительской ответственности.

Обладающий сформированными представлениями о ценности и значении в отечественной и мировой культуре языков и литературы народов России, демонстрирующий устойчивый интерес к чтению как средству познания отечественной и мировой духовной культуры.

Эстетическое воспитание

Выражающий понимание ценности отечественного и мирового искусства, российского и мирового художественного наследия.

Проявляющий восприимчивость к разным видам искусства, понимание эмоционального воздействия искусства, его влияния на поведение людей, умеющий критически оценивать это влияние.

Проявляющий понимание художественной культуры как средства коммуникации и самовыражения в современном обществе, значения нравственных норм, ценностей, традиций в искусстве.

Ориентированный на осознанное творческое самовыражение, реализацию творческих способностей в разных видах искусства с учётом российских традиционных духовных и нравственных ценностей, на эстетическое обустройство собственного быта.

Физическое воспитание, формирование культуры здоровья и эмоционального благополучия

Понимающий и выражающий в практической деятельности ценность жизни, здоровья и безопасности, значение личных усилий в сохранении и укреплении своего здоровья и здоровья других людей.

Соблюдающий правила личной и общественной безопасности, в том числе безопасного поведения в информационной среде.

Выражающий на практике установку на здоровый образ жизни (здоровое питание, соблюдение гигиены, режим занятий и отдыха, физическую активность), стремление к физическому совершенствованию, соблюдающий и пропагандирующий безопасный и здоровый образ жизни.

Проявляющий сознательное и обоснованное неприятие вредных привычек (курения, употребления алкоголя, наркотиков, любых форм зависимостей), деструктивного поведения в обществе и цифровой среде, понимание их вреда для физического и психического здоровья.

Демонстрирующий навыки рефлексии своего состояния (физического, эмоционального, психологического), состояния других людей с точки зрения безопасности, сознательного управления своим эмоциональным состоянием, развивающий способности адаптироваться к стрессовым ситуациям в общении, в разных коллективах, к меняющимся условиям (социальным, информационным, природным).

Трудовое воспитание

Уважающий труд, результаты труда, трудовые и профессиональные достижения своих земляков, их вклад в развитие своего поселения, края, страны, трудовые достижения российского народа.

Проявляющий способность к творческому созидательному социально значимому труду в доступных по возрасту социально-трудовых ролях, в том числе предпринимательской деятельности в условиях самозанятости или наёмного труда.

Участвующий в социально значимой трудовой деятельности разного вида в семье, общеобразовательной организации, своей местности, в том числе оплачиваемом труде в каникулярные периоды, с учётом соблюдения законодательства.

Выражающий осознанную готовность к получению профессионального образования, к непрерывному образованию в течение жизни как условию успешной профессиональной и общественной деятельности.

Понимающий специфику трудовой деятельности, регулирования трудовых отношений, самообразования и профессиональной самоподготовки в информационном высокотехнологическом обществе, готовый учиться и трудиться в современном обществе.

Ориентированный на осознанный выбор сферы трудовой, профессиональной деятельности в российском обществе с учётом личных жизненных планов, потребностей своей семьи, общества.

Экологическое воспитание

Демонстрирующий в поведении сформированность экологической культуры на основе понимания влияния социально-экономических процессов на природу, в том числе на глобальном уровне, ответственность за действия в природной среде.

Выражающий деятельное неприятие действий, приносящих вред природе.

Применяющий знания естественных и социальных наук для разумного, бережливого природопользования в быту, общественном пространстве.

Имеющий и развивающий опыт экологически направленной, природоохранной, ресурсосберегающей деятельности, участвующий в его приобретении другими людьми.

Ценности научного познания

Деятельно выражающий познавательные интересы в разных предметных областях с учётом своих интересов, способностей, достижений.

Обладающий представлением о современной научной картине мира, достижениях науки и техники, аргументированно выражающий понимание значения науки в жизни российского общества, обеспечении его безопасности, гуманитарном, социально- экономическом развитии России.

Демонстрирующий навыки критического мышления, определения достоверной научной информации и критики антинаучных представлений.

Развивающий и применяющий навыки наблюдения, накопления и систематизации фактов, осмысления опыта в естественнонаучной и гуманитарной областях познания, исследовательской деятельности.

духовно-нравственных ценностей и норм с учётом осознания последствий поступков.

Выражающий неприятие антигуманных и асоциальных поступков, поведения, противоречащих традиционным в России духовно-нравственным нормам и ценностям.

Сознающий соотношение свободы и ответственности личности в условиях индивидуального и общественного пространства, значение и ценность межнационального, межрелигиозного согласия людей, народов в России, умеющий общаться с людьми разных народов, вероисповеданий.

Проявляющий уважение к старшим, к российским традиционным семейным ценностям, институту брака как союзу мужчины и женщины для создания семьи, рождения и воспитания детей.

Проявляющий интерес к чтению, к родному языку, русскому языку и литературе какчасти духовной культуры своего народа, российского общества.

Эстетическое воспитание

Выражающий понимание ценности отечественного и мирового искусства, народных традиций и народного творчества в искусстве.

Проявляющий эмоционально-чувственную восприимчивость к разным видам искусства, традициям и творчеству своего и других народов, понимание их влияния на поведение людей.

Сознающий роль художественной культуры как средства коммуникации и самовыражения в современном обществе, значение нравственных норм, ценностей, традиций в искусстве.

Ориентированный на самовыражение в разных видах искусства, в художественномтворчестве.

Физическое воспитание, формирование культуры здоровья и эмоционального благополучия

Понимающий ценность жизни, здоровья и безопасности, значение личных усилий в сохранении здоровья, знающий и соблюдающий правила безопасности, безопасного поведения, в том числе в информационной среде.

Выражающий установку на здоровый образ жизни (здоровое питание, соблюдение гигиенических правил, сбалансированный режим занятий и отдыха, регулярную физическую активность).

Проявляющий неприятие вредных привычек (курения, употребления алкоголя, наркотиков, игровой и иных форм зависимостей), понимание их последствий, вреда для физического и психического здоровья.

Умеющий осознавать физическое и эмоциональное состояние (своё и других людей), стремящийся управлять собственным эмоциональным состоянием.

Способный адаптироваться к меняющимся социальным, информационным и природным условиям, стрессовым ситуациям.

Трудовое воспитание

Уважающий труд, результаты своего труда, труда других людей.

Проявляющий интерес к практическому изучению профессий и труда различного рода, в том числе на основе применения предметных знаний.

Сознающий важность трудолюбия, обучения труду, накопления навыков трудовой деятельности на протяжении жизни для успешной профессиональной самореализации в российском обществе.

Участвующий в решении практических трудовых дел, задач (в семье, общеобразовательной организации, своей местности) технологической и социальной направленности, способный инициировать, планировать и самостоятельно выполнять такого рода деятельность.

Выражающий готовность к осознанному выбору и построению индивидуальной траектории образования и жизненных планов с учётом личных и общественных интересов, потребностей.

Экологическое воспитание

Понимающий значение и глобальный характер экологических проблем, путей их решения, значение экологической культуры человека, общества.

Сознающий свою ответственность как гражданина и потребителя в условиях взаимосвязи природной, технологической и социальной сред.

Выражающий активное неприятие действий, приносящих вред природе.

Ориентированный на применение знаний естественных и социальных наук для решения задач в области охраны природы, планирования своих поступков и оценки их возможных последствий для окружающей среды.

Участвующий в практической деятельности экологической, природоохранной направленности.

Ценности научного познания

Выражающий познавательные интересы в разных предметных областях с учётом индивидуальных интересов, способностей, достижений.

Ориентированный в деятельности на систему научных представлений о закономерностях развития человека, природы и общества, взаимосвязях человека с природной и социальной средой.

Развивающий навыки использования различных средств познания, накопления знаний о мире (языковая, читательская культура, деятельность в информационной, цифровой среде).

Демонстрирующий навыки наблюдений, накопления фактов, осмысления опыта вестественнонаучной и гуманитарной областях познания, исследовательской деятельности.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ ПО ФИЗИКЕ НА УРОВНЕ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ

Освоение учебного предмета «Физика» на уровне среднего общего образования (базовый уровень) должно обеспечить достижение следующих личностных, метапредметных и предметных образовательных результатов.

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения учебного предмета «Физика» должны отражать готовность и способность обучающихся руководствоваться сформированной внутренней позицией личности, системой ценностных ориентаций, позитивных внутренних убеждений, соответствующих традиционным ценностям российского общества, расширение жизненного опыта и опыта деятельности в процессе реализации основных направлений воспитательной деятельности, в том числе в части:

1) гражданского воспитания:

сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества;

принятие традиционных общечеловеческих гуманистических и демократических ценностей;

готовность вести совместную деятельность в интересах гражданского общества, участвовать в самоуправлении в образовательной организации;

умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением;

готовность к гуманитарной и волонтёрской деятельности;

2) патриотического воспитания:

сформированность российской гражданской идентичности, патриотизма;

ценностное отношение к государственным символам, достижениям российских учёных в области физики и техники;

3) духовно-нравственного воспитания:

сформированность нравственного сознания, этического поведения;

способность оценивать ситуацию и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности, в том числе в деятельности учёного;

осознание личного вклада в построение устойчивого будущего;

4) эстетического воспитания:

эстетическое отношение к миру, включая эстетику научного творчества, присущего физической науке;

5) трудового воспитания:

интерес к различным сферам профессиональной деятельности, в том числе связанным с физикой и техникой, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы;

готовность и способность к образованию и самообразованию в области физики на протяжении всей жизни;

6) экологического воспитания:

сформированность экологической культуры, осознание глобального характера экологических проблем;

планирование и осуществление действий в окружающей среде на основе знания целей устойчивого развития человечества;

расширение опыта деятельности экологической направленности на основе имеющихся знаний по физике;

7) ценности научного познания:

сформированность мировоззрения, соответствующего современному уровню развития физической науки;

осознание ценности научной деятельности, готовность в процессе изучения физики осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Познавательные универсальные учебные действия Базовые логические действия:

самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне;

определять цели деятельности, задавать параметры и критерии их достижения;

выявлять закономерности и противоречия в рассматриваемых физических явлениях;

разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов;

вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности;

координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

развивать креативное мышление при решении жизненных проблем.

Базовые исследовательские действия:

владеть научной терминологией, ключевыми понятиями и методами физической науки;

владеть навыками учебно-исследовательской и проектной деятельности в области физики, способностью и готовностью к самостоятельному поиску методов решения задач физического содержания, применению различных методов познания;

владеть видами деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных проектов в области физики;

выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;

анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях;

ставить и формулировать собственные задачи в образовательной деятельности, в том числе при изучении физики;

давать оценку новым ситуациям, оценивать приобретённый опыт;

уметь переносить знания по физике в практическую область жизнедеятельности;

уметь интегрировать знания из разных предметных областей; выдвигать новые идеи, предлагать оригинальные подходы и решения; ставить проблемы и задачи, допускающие альтернативные решения.

Работа с информацией:

владеть навыками получения информации физического содержания из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления;

оценивать достоверность информации;

использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;

создавать тексты физического содержания в различных форматах с учётом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации.

Коммуникативные универсальные учебные действия:

осуществлять общение на уроках физики и во внеурочной деятельности; распознавать предпосылки конфликтных ситуаций и смягчать конфликты;

развёрнуто и логично излагать свою точку зрения с использованием языковых средств;

понимать и использовать преимущества командной и индивидуальной работы;

выбирать тематику и методы совместных действий с учётом общих интересов и возможностей каждого члена коллектива;

принимать цели совместной деятельности, организовывать и координировать действия по её достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы;

оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;

предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости;

осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

Регулятивные универсальные учебные действия Самоорганизация:

самостоятельно осуществлять познавательную деятельность в области физики и астрономии, выявлять проблемы, ставить и формулировать собственные задачи;

самостоятельно составлять план решения расчётных и качественных задач, план выполнения практической работы с учётом имеющихся ресурсов, собственных возможностей и предпочтений;

давать оценку новым ситуациям;

расширять рамки учебного предмета на основе личных предпочтений;

делать осознанный выбор, аргументировать его, брать на себя ответственность за решение;

оценивать приобретённый опыт;

способствовать формированию и проявлению эрудиции в области физики, постоянно повышать свой образовательный и культурный уровень.

Самоконтроль, эмоциональный интеллект:

давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям;

владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований;

использовать приёмы рефлексии для оценки ситуации, выбора верного решения;

уметь оценивать риски и своевременно принимать решения по их снижению;

принимать мотивы и аргументы других при анализе результатов деятельности;

принимать себя, понимая свои недостатки и достоинства;

принимать мотивы и аргументы других при анализе результатов деятельности;

признавать своё право и право других на ошибки.

В процессе достижения личностных результатов освоения программы по физике для уровня среднего общего образования у обучающихся совершенствуется эмоциональный интеллект, предполагающий сформированность:

самосознания, включающего способность понимать своё эмоциональное состояние, видеть направления развития собственной эмоциональной сферы, быть уверенным в себе;

саморегулирования, включающего самоконтроль, умение принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому;

внутренней мотивации, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать исходя из своих возможностей;

эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении общения, способность к сочувствию и сопереживанию;

социальных навыков, включающих способность выстраивать отношения с другими людьми, заботиться, проявлять интерес и разрешать конфликты.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

К концу обучения **в 10 классе** предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;

учитывать границы применения изученных физических моделей: материальная точка, инерциальная система отсчёта, абсолютно твёрдое тело, идеальный газ, модели строения газов, жидкостей и твёрдых тел, точечный электрический заряд при решении физических задач;

распознавать физические явления (процессы) и объяснять их на основе законов механики, молекулярно-кинетической теории строения вещества и

электродинамики: равномерное И равноускоренное прямолинейное движение, свободное падение тел, движение по окружности, инерция, взаимодействие тел, диффузия, броуновское движение, строение жидкостей и твёрдых тел, изменение объёма тел при нагревании (охлаждении), тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, повышение давления газа при его нагревании в закрытом СВЯЗЬ между параметрами состояния газа В изопроцессах, электризация тел, взаимодействие зарядов;

описывать механическое движение, используя физические величины: координата, путь, перемещение, скорость, ускорение, масса тела, сила, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую величину с другими величинами;

описывать изученные тепловые свойства тел и тепловые явления, используя физические величины: давление газа, температура, средняя кинетическая энергия хаотического движения молекул, среднеквадратичная скорость молекул, количество теплоты, внутренняя энергия, работа газа, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую величину с другими величинам;

описывать изученные электрические свойства вещества и электрические явления (процессы), используя физические величины: электрический заряд, электрическое поле, напряжённость поля, потенциал, разность потенциалов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы; указывать формулы, связывающие данную физическую величину с другими величинами;

анализировать физические процессы и явления, используя физические законы и принципы: закон всемирного тяготения, I, II и III законы Ньютона, закон сохранения механической энергии, закон сохранения импульса, принцип суперпозиции сил, принцип равноправия инерциальных систем отсчёта, молекулярно-кинетическую теорию строения вещества, газовые законы, связь средней кинетической энергии теплового движения молекул с абсолютной температурой, первый закон термодинамики, закон сохранения электрического заряда, закон Кулона, при этом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости;

объяснять основные принципы действия машин, приборов и технических устройств; различать условия их безопасного использования в повседневной жизни;

выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых и косвенных измерений, при этом формулировать проблему/задачу и гипотезу учебного эксперимента, собирать установку из предложенного оборудования, проводить опыт и формулировать выводы;

осуществлять прямые и косвенные измерения физических величин, при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений;

исследовать зависимости между физическими величинами с использованием прямых измерений, при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;

соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;

решать расчётные задачи с явно заданной физической моделью, используя физические законы и принципы, на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины;

решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;

использовать при решении учебных задач современные информационные технологии для поиска, структурирования, интерпретации и представления учебной и научно-популярной информации, полученной из различных источников, критически анализировать получаемую информацию;

приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, объяснение процессов окружающего мира, в развитие техники и технологий;

использовать теоретические знания по физике в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы.

К концу обучения **в 11 классе** предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей, целостность и единство физической картины мира;

учитывать границы применения изученных физических моделей: точечный электрический заряд, луч света, точечный источник света, ядерная модель атома, нуклонная модель атомного ядра при решении физических задач;

распознавать физические явления (процессы) и объяснять их на основе законов электродинамики и квантовой физики: электрическая проводимость, тепловое, световое, химическое, магнитное действия тока, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и движущийся заряд, электромагнитные колебания и волны, прямолинейное распространение света, отражение, преломление, интерференция, дифракция и поляризация света, дисперсия фотоэлектрический эффект (фотоэффект), световое давление, возникновение спектра атома водорода, естественная линейчатого И искусственная радиоактивность;

описывать изученные свойства вещества (электрические, магнитные, электрическую оптические, проводимость различных сред) И электромагнитные явления (процессы), используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, разность потенциалов, электродвижущая сила, работа тока, индукция магнитного поля, сила Ампера, сила Лоренца, индуктивность катушки, энергия электрического и магнитного полей, период и частота колебаний в колебательном контуре, заряд и сила тока в процессе гармонических электромагнитных колебаний, фокусное расстояние и оптическая сила линзы, при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, указывать формулы, связывающие данную физическую величину c другими величинами;

описывать изученные квантовые явления и процессы, используя физические величины: скорость электромагнитных волн, длина волны и

частота света, энергия и импульс фотона, период полураспада, энергия связи атомных ядер, при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

анализировать физические процессы и явления, используя физические законы и принципы: закон Ома, законы последовательного и параллельного соединения проводников, закон Джоуля—Ленца, закон электромагнитной индукции, закон прямолинейного распространения света, законы отражения света, законы преломления света, уравнение Эйнштейна для фотоэффекта, закон сохранения энергии, закон сохранения импульса, закон сохранения электрического заряда, закон сохранения массового числа, постулаты Бора, закон радиоактивного распада, при этом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости;

определять направление вектора индукции магнитного поля проводника с током, силы Ампера и силы Лоренца;

строить и описывать изображение, создаваемое плоским зеркалом, тонкой линзой;

выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых и косвенных измерений: при этом формулировать проблему/задачу и гипотезу учебного эксперимента, собирать установку из предложенного оборудования, проводить опыт и формулировать выводы;

осуществлять прямые и косвенные измерения физических величин, при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений;

исследовать зависимости физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;

соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;

решать расчётные задачи с явно заданной физической моделью, используя физические законы и принципы, на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы,

необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины;

решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;

использовать при решении учебных задач современные информационные технологии для поиска, структурирования, интерпретации и представления учебной и научно-популярной информации, полученной из различных источников, критически анализировать получаемую информацию;

объяснять принципы действия машин, приборов и технических устройств, различать условия их безопасного использования в повседневной жизни;

приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, в объяснение процессов окружающего мира, в развитие техники и технологий;

использовать теоретические знания по физике в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 10 КЛАСС

		Количество	насов		Электронные
№ п/п	Наименование разделов и тем программы	Всего	Контрольные работы	Практические работы	(цифровые) образовательные ресурсы
Раздел	1. ФИЗИКА И МЕТОДЫ НАУЧНОГО П	ОЗНАНИЯ			
1.1	Физика и методы научного познания	2			Библиотека ЦОК https://m.edsoo.ru/7f41bf72
Итого п	по разделу	2			
Раздел 2	2. МЕХАНИКА				
2.1	Кинематика	5			Библиотека ЦОК https://m.edsoo.ru/7f41bf72
2.2	Динамика	7			Библиотека ЦОК https://m.edsoo.ru/7f41bf72
2.3	Законы сохранения в механике	6	1	1	Библиотека ЦОК https://m.edsoo.ru/7f41bf72
Итого п	ю разделу	18			
Раздел 3	3. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМ	ОДИНАМИКА			
3.1	Основы молекулярно-кинетической теории	9		1	Библиотека ЦОК https://m.edsoo.ru/7f41bf72
3.2	Основы термодинамики	10	1		Библиотека ЦОК https://m.edsoo.ru/7f41bf72
3.3	Агрегатные состояния вещества. Фазовые переходы	5			Библиотека ЦОК https://m.edsoo.ru/7f41bf72

Итого по разделу		24			
Раздел 4	4. ЭЛЕКТРОДИНАМИКА				
4.1	Электростатика	10		1	Библиотека ЦОК https://m.edsoo.ru/7f41bf72
4.2	Постоянный электрический ток. Токи в различных средах	12	1	1	Библиотека ЦОК https://m.edsoo.ru/7f41bf72
Итого п	о разделу	22			
Резервн	ое время	2	1		
ОБЩЕЕ	Е КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	68	4	4	

11 КЛАСС

	Наименование разделов и тем программы	Количество	часов		Электронные
№ п/п		Всего	Контрольные работы	Практические работы	(цифровые) образовательные ресурсы
Раздел	1. ЭЛЕКТРОДИНАМИКА				
1.1	Магнитное поле. Электромагнитная индукция	11	1	3	Библиотека ЦОК https://m.edsoo.ru/7f41c97c
Итого п	о разделу	11			
Раздел 2	2. КОЛЕБАНИЯ И ВОЛНЫ				
2.1	Механические и электромагнитные колебания	9		1	Библиотека ЦОК https://m.edsoo.ru/7f41c97c
2.2	Механические и электромагнитные волны	5	1		Библиотека ЦОК https://m.edsoo.ru/7f41c97c
2.3	Оптика	10		3	Библиотека ЦОК https://m.edsoo.ru/7f41c97c
Итого п	о разделу	24			
Раздел 3	3. ОСНОВЫ СПЕЦИАЛЬНОЙ ТЕОРИИ	ОТНОСИТЕЛ	ІЬНОСТИ		
3.1	Основы специальной теории относительности	4	1		Библиотека ЦОК https://m.edsoo.ru/7f41c97c
Итого п	о разделу	4			
Раздел -	4. КВАНТОВАЯ ФИЗИКА				
4.1	Элементы квантовой оптики	6			Библиотека ЦОК https://m.edsoo.ru/7f41c97c
4.2	Строение атома	4			Библиотека ЦОК

					https://m.edsoo.ru/7f41c97c
4.3	Атомное ядро	5			Библиотека ЦОК https://m.edsoo.ru/7f41c97c
Итого і	по разделу	15			
Раздел	5. ЭЛЕМЕНТЫ АСТРОНОМИИ И АСТРО	ФИЗИКИ	1		
5.1	Элементы астрономии и астрофизики	7	1		Библиотека ЦОК https://m.edsoo.ru/7f41c97c
Итого і	Итого по разделу				
Раздел	6. ОБОБЩАЮЩЕЕ ПОВТОРЕНИЕ				
6.1	Обобщающее повторение	4			Библиотека ЦОК https://m.edsoo.ru/7f41c97c
Итого по разделу		4			
Резервное время		3			
ОБЩЕ	ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ		4	7	

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ 10 КЛАСС

	Тема урока	Количест	во часов		Дата изучения	Электронные
№ п/п		Всего	Контрольные работы	Практические работы		цифровые образовательные ресурсы
1	Физика — наука о природе. Научные методы познания окружающего мира	1				Библиотека ЦОК https://m.edsoo.ru/ff0c32e2
2	Роль и место физики в формировании современной научной картины мира, в практической деятельности людей	1				Библиотека ЦОК https://m.edsoo.ru/ff0c33e6
3	Механическое движение. Относительность механического движения. Перемещение, скорость, ускорение	1				Библиотека ЦОК https://m.edsoo.ru/ff0c3508
4	Равномерное прямолинейное движение	1				Библиотека ЦОК https://m.edsoo.ru/ff0c3620
5	Равноускоренное прямолинейное движение	1				Библиотека ЦОК https://m.edsoo.ru/ff0c372e
6	Свободное падение. Ускорение свободного падения	1				Библиотека ЦОК https://m.edsoo.ru/ff0c39cc
7	Криволинейное движение. Движение материальной точки по окружности	1				Библиотека ЦОК https://m.edsoo.ru/ff0c3ada
8	Принцип относительности Галилея.	1				Библиотека ЦОК

	Инерциальные системы отсчета.		https://m.edsoo.ru/ff0c3be8
	Первый закон Ньютона		
9	Масса тела. Сила. Принцип суперпозиции сил. Второй закон Ньютона для материальной точки	1	Библиотека ЦОК https://m.edsoo.ru/ff0c3be8
10	Третий закон Ньютона для материальных точек	1	Библиотека ЦОК https://m.edsoo.ru/ff0c3be8
11	Закон всемирного тяготения. Сила тяжести. Первая космическая скорость	1	Библиотека ЦОК https://m.edsoo.ru/ff0c3d00
12	Сила упругости. Закон Гука. Вес тела	1	Библиотека ЦОК https://m.edsoo.ru/ff0c3e18
13	Сила трения. Коэффициент трения. Сила сопротивления при движении тела в жидкости или газе	1	Библиотека ЦОК https://m.edsoo.ru/ff0c3f76
14	Поступательное и вращательное движение абсолютно твёрдого тела. Момент силы. Плечо силы. Условия равновесия твёрдого тела	1	Библиотека ЦОК https://m.edsoo.ru/ff0c41a6
15	Импульс материальной точки, системы материальных точек. Импульс силы. Закон сохранения импульса. Реактивное движение	1	Библиотека ЦОК https://m.edsoo.ru/ff0c43d6
16	Работа и мощность силы. Кинетическая энергия материальной точки. Теорема об изменении кинетической энергии	1	Библиотека ЦОК https://m.edsoo.ru/ff0c4502
17	Потенциальная энергия.	1	Библиотека ЦОК

	Потенциальная энергия упруго				https://m.edsoo.ru/ff0c461a
	деформированной пружины.				
	Потенциальная энергия тела вблизи				
	поверхности Земли				
	Потенциальные и непотенциальные				
	силы. Связь работы				
18	непотенциальных сил с изменением	1			Библиотека ЦОК
10	механической энергии системы тел.	1			https://m.edsoo.ru/ff0c478c
	Закон сохранения механической				
	энергии				
	Лабораторная работа №1 «Изучение				
19	закона сохранения механической	1		1	
	энергии».				
	Контрольная работа №1 по теме				Библиотека ЦОК
20	«Кинематика. Динамика. Законы	1	1		https://m.edsoo.ru/ff0c4b74
	сохранения в механике»				mtps://m.edsoo.id/1100-407-4
	Основные положения молекулярно-				Библиотека ЦОК
21	кинетической теории. Броуновское	1			https://m.edsoo.ru/ff0c4dc2
	движение. Диффузия				https://m.cusoo.ru/110c=ac2
	Характер движения и				
22	взаимодействия частиц вещества.	1			
22	Модели строения газов, жидкостей	1			
	и твёрдых тел				
23	Масса молекул. Количество	1			
23	вещества. Постоянная Авогадро	1			
	Тепловое равновесие. Температура				
24	и её измерение. Шкала температур	1			
	Цельсия				

25	Идеальный газ в МКТ. Основное уравнение МКТ	1		Библиотека ЦОК https://m.edsoo.ru/ff0c4fde
26	Абсолютная температура как мера средней кинетической энергии движения молекул. Уравнение Менделеева-Клапейрона	1		Библиотека ЦОК https://m.edsoo.ru/ff0c511e
27	Закон Дальтона. Газовые законы	1		
28	Лабораторная работа №2 «Экспериментальная проверка закона Гей-Люссака»	1	1	
29	Изопроцессы в идеальном газе и их графическое представление	1		Библиотека ЦОК https://m.edsoo.ru/ff0c570e
30	Внутренняя энергия термодинамической системы и способы её изменения. Количество теплоты и работа. Внутренняя энергия одноатомного идеального газа	1		Библиотека ЦОК https://m.edsoo.ru/ff0c5952
31	Виды теплопередачи	1		Библиотека ЦОК https://m.edsoo.ru/ff0c5c36
32	Удельная теплоёмкость вещества. Количество теплоты при теплопередаче. Адиабатный процесс	1		Библиотека ЦОК https://m.edsoo.ru/ff0c5c36
33	Первый закон термодинамики и его применение к изопроцессам	1		Библиотека ЦОК https://m.edsoo.ru/ff0c5efc
34	Необратимость процессов в природе. Второй закон термодинамики	1		Библиотека ЦОК https://m.edsoo.ru/ff0c6230

35	Принцип действия и КПД тепловой машины	1		Библиотека ЦОК https://m.edsoo.ru/ff0c600a
36	Цикл Карно и его КПД	1		
37	Экологические проблемы теплоэнергетики	1		
38	Обобщающий урок «Молекулярная физика. Основы термодинамики»	1		Библиотека ЦОК https://m.edsoo.ru/ff0c6938
39	Контрольная работа №2 по теме «Молекулярная физика. Основы термодинамики»	1	1	Библиотека ЦОК https://m.edsoo.ru/ff0c6a50
40	Парообразование и конденсация. Испарение и кипение	1		Библиотека ЦОК https://m.edsoo.ru/ff0c63b6
41	Абсолютная и относительная влажность воздуха. Насыщенный пар	1		Библиотека ЦОК https://m.edsoo.ru/ff0c64d8
42	Твёрдое тело. Кристаллические и аморфные тела. Анизотропия свойств кристаллов. Жидкие кристаллы. Современные материалы	1		Библиотека ЦОК https://m.edsoo.ru/ff0c65f0
43	Плавление и кристаллизация. Удельная теплота плавления. Сублимация	1		Библиотека ЦОК https://m.edsoo.ru/ff0c6708
44	Уравнение теплового баланса	1		Библиотека ЦОК https://m.edsoo.ru/ff0c6820
45	Электризация тел. Электрический заряд. Два вида электрических зарядов	1		Библиотека ЦОК https://m.edsoo.ru/ff0c6bcc
46	Проводники, диэлектрики и	1		Библиотека ЦОК

	полупроводники. Закон сохранения электрического заряда			https://m.edsoo.ru/ff0c6bcc
47	Взаимодействие зарядов. Закон Кулона. Точечный электрический заряд	1		Библиотека ЦОК https://m.edsoo.ru/ff0c6ce4
48	Напряжённость электрического поля. Принцип суперпозиции электрических полей. Линии напряжённости	1		Библиотека ЦОК https://m.edsoo.ru/ff0c6df2
49	Работа сил электростатического поля. Потенциал. Разность потенциалов	1		Библиотека ЦОК https://m.edsoo.ru/ff0c6f00
50	Проводники и диэлектрики в электростатическом поле. Диэлектрическая проницаемость	1		Библиотека ЦОК https://m.edsoo.ru/ff0c7018
51	Электроёмкость. Конденсатор	1		Библиотека ЦОК https://m.edsoo.ru/ff0c7126
52	Электроёмкость плоского конденсатора. Энергия заряженного конденсатора	1		Библиотека ЦОК https://m.edsoo.ru/ff0c72c0
53	Принцип действия и применение конденсаторов, копировального аппарата, струйного принтера. Электростатическая защита. Заземление электроприборов	1		
54	Электрический ток, условия его существования. Постоянный ток. Сила тока. Напряжение. Сопротивление. Закон Ома для	1		

	участка цепи			
55	Последовательное, параллельное, смешанное соединение проводников. Лабораторная работа «Изучение смешанного соединения резисторов»	1	0.5	Библиотека ЦОК https://m.edsoo.ru/ff0c74f0
56	Работа и мощность электрического тока. Закон Джоуля-Ленца	1		Библиотека ЦОК https://m.edsoo.ru/ff0c7838
57	Закон Ома для полной (замкнутой) электрической цепи. Короткое замыкание. Лабораторная работа «Измерение ЭДС источника тока и его внутреннего сопротивления»	1	0.5	Библиотека ЦОК https://m.edsoo.ru/ff0c7ae0
58	Лабораторная работа "Измерение электроёмкости конденсатора"	1	1	
59	Электронная проводимость твёрдых металлов. Зависимость сопротивления металлов от температуры. Сверхпроводимость	1		
60	Электрический ток в вакууме. Свойства электронных пучков	1		
61	Полупроводники, их собственная и примесная проводимость. Свойства р—п-перехода. Полупроводниковые приборы	1		Библиотека ЦОК https://m.edsoo.ru/ff0c84ae
62	Электрический ток в растворах и расплавах электролитов. Электролитическая диссоциация.	1		Библиотека ЦОК https://m.edsoo.ru/ff0c82ba

	Электролиз				
63	Электрический ток в газах. Самостоятельный и несамостоятельный разряд. Молния. Плазма	1			Библиотека ЦОК https://m.edsoo.ru/ff0c84ae
64	Электрические приборы и устройства и их практическое применение. Правила техники безопасности	1			Библиотека ЦОК https://m.edsoo.ru/ff0c86fc
65	Обобщающий урок «Электродинамика»	1			Библиотека ЦОК https://m.edsoo.ru/ff0c88be
66	Контрольная работа по теме «Электростатика. Постоянный электрический ток. Токи в различных средах»	1	1		Библиотека ЦОК https://m.edsoo.ru/ff0c8a8a
67	Резервный урок. Контрольная работа по теме "Электродинамика"	1	1		Библиотека ЦОК https://m.edsoo.ru/ff0c8c56
68	Резервный урок. Обобщающий урок по темам 10 класса	1			Библиотека ЦОК https://m.edsoo.ru/ff0c8f6c
	ЦЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ГРАММЕ	68	4	4	

11 КЛАСС

		Колич	ество ча	асов	11 A		11 B		
№ п/п	Тема урока	Все	Кон трол ьны е рабо ты	Прак тичес кие работ ы	Дата по рограм ме	Дата по факту	Дата по рограм ме	Дата по факту	Электронные цифровые образовательные ресурсы
1	Постоянные магниты и их взаимодействие. Магнитное поле. Вектор магнитной индукции. Линии магнитной индукции	1							Библиотека ЦОК https://m.edsoo.ru/ff0c97 78
2	Магнитное поле проводника с током. Опыт Эрстеда. Взаимодействие проводников с током	1							Библиотека ЦОК https://m.edsoo.ru/ff0c98 fe
3	Лабораторная работа №1 «Изучение магнитного поля катушки с током»	1		1					Библиотека ЦОК https://m.edsoo.ru/ff0c98 fe
4	Действие магнитного поля на проводник с током. Сила Ампера. Лабораторная работа №2 «Исследование действия постоянного магнита на рамку с током»	1		1					Библиотека ЦОК https://m.edsoo.ru/ff0c9a c0
5	Действие магнитного поля на движущуюся заряженную частицу. Сила Лоренца. Работа силы Лоренца	1							Библиотека ЦОК https://m.edsoo.ru/ff0c9d f4

6	Электромагнитная индукция. Поток вектора магнитной индукции. ЭДС индукции. Закон электромагнитной индукции Фарадея	1				
7	Лабораторная работа №3 «Исследование явления электромагнитной индукции»	1		1		Библиотека ЦОК https://m.edsoo.ru/ff0ca1 50
8	Индуктивность. Явление самоиндукции. ЭДС самоиндукции. Энергия магнитного поля катушки с током. Электромагнитное поле	1				Библиотека ЦОК https://m.edsoo.ru/ff0ca6 00
9	Технические устройства и их применение: постоянные магниты, электромагниты, электродвигатель, ускорители элементарных частиц, индукционная печь	1				
10	Обобщающий урок «Магнитное поле. Электромагнитная индукция»	1				Библиотека ЦОК https://m.edsoo.ru/ff0cab 82
11	Контрольная работа №1 по теме «Магнитное поле. Электромагнитная индукция»	1	1			Библиотека ЦОК https://m.edsoo.ru/ff0cad 58
12	Свободные механические колебания. Гармонические колебания. Уравнение гармонических колебаний. Превращение энергии	1				Библиотека ЦОК https://m.edsoo.ru/ff0caf 06
13	Лабораторная работа №4 «Исследование зависимости периода малых колебаний груза на нити от длины нити и массы груза»	1		1		

		1	
14	Колебательный контур. Свободные электромагнитные колебания в идеальном колебательном контуре. Аналогия между механическими и электромагнитными колебаниями	1	Библиотека ЦОК https://m.edsoo.ru/ff0cb8 20
15	Формула Томсона. Закон сохранения энергии в идеальном колебательном контуре	1	Библиотека ЦОК https://m.edsoo.ru/ff0cb9 c4
16	Представление о затухающих колебаниях. Вынужденные механические колебания. Резонанс. Вынужденные электромагнитные колебания	1	Библиотека ЦОК https://m.edsoo.ru/ff0cbb 86
17	Переменный ток. Синусоидальный переменный ток. Мощность переменного тока. Амплитудное и действующее значение силы тока и напряжения	1	Библиотека ЦОК https://m.edsoo.ru/ff0cbd 34
18	Трансформатор. Производство, передача и потребление электрической энергии	1	
19	Устройство и практическое применение электрического звонка, генератора переменного тока, линий электропередач	1	Библиотека ЦОК https://m.edsoo.ru/ff0cc3 24
20	Экологические риски при производстве электроэнергии. Культура использования электроэнергии в повседневной жизни	1	
21	Механические волны, условия распространения. Период. Скорость распространения и длина волны. Поперечные и продольные волны	1	Библиотека ЦОК https://m.edsoo.ru/ff0cca 54

22	Звук. Скорость звука. Громкость звука. Высота тона. Тембр звука	1				Библиотека ЦОК https://m.edsoo.ru/ff0ccc Oc
23	Электромагнитные волны, их свойства и скорость. Шкала электромагнитных волн	1				Библиотека ЦОК https://m.edsoo.ru/ff0ccfe 0
24	Принципы радиосвязи и телевидения. Развитие средств связи. Радиолокация	1				
25	Контрольная работа №2 по теме «Колебания и волны»	1	1			Библиотека ЦОК https://m.edsoo.ru/ff0cc6 f8
26	Прямолинейное распространение света в однородной среде. Точечный источник света. Луч света	1				Библиотека ЦОК https://m.edsoo.ru/ff0cd3 50
27	Отражение света. Законы отражения света. Построение изображений в плоском зеркале	1				Библиотека ЦОК https://m.edsoo.ru/ff0cd4 e0
28	Преломление света. Полное внутреннее отражение. Предельный угол полного внутреннего отражения	1				Библиотека ЦОК https://m.edsoo.ru/ff0cd7 f6
29	Лабораторная работа №5 «Измерение показателя преломления стекла»	1		1		Библиотека ЦОК https://m.edsoo.ru/ff0cd6 7a
30	Линзы. Построение изображений в линзе. Формула тонкой линзы. Увеличение линзы	1				Библиотека ЦОК https://m.edsoo.ru/ff0cdd 1e
31	Лабораторная работа №6 «Исследование свойств изображений в	1		1		

	линзах»					
32	Дисперсия света. Сложный состав белого света. Цвет. <i>Лабораторная работа №7</i> « <i>Наблюдение дисперсии света</i> »	1		1		
33	Интерференция света. Дифракция света. Дифракционная решётка	1				Библиотека ЦОК https://m.edsoo.ru/ff0ced 22
34	Поперечность световых волн. Поляризация света	1				Библиотека ЦОК https://m.edsoo.ru/ff0cf0 2e
35	Оптические приборы и устройства и условия их безопасного применения	1				
36	Границы применимости классической механики. Постулаты специальной теории относительности	1				Библиотека ЦОК https://m.edsoo.ru/ff0cf8 62
37	Относительность одновременности. Замедление времени и сокращение длины	1				Библиотека ЦОК https://m.edsoo.ru/ff0cfa 42
38	Энергия и импульс релятивистской частицы. Связь массы с энергией и импульсом. Энергия покоя	1				Библиотека ЦОК https://m.edsoo.ru/ff0cfc 68
39	Контрольная работа №3 по теме «Оптика. Основы специальной теории относительности»	1	1			Библиотека ЦОК https://m.edsoo.ru/ff0cf6f 0
40	Фотоны. Формула Планка. Энергия и импульс фотона	1				Библиотека ЦОК https://m.edsoo.ru/ff0cfe 16
41	Открытие и исследование фотоэффекта.	1				Библиотека ЦОК

	Опыты А. Г. Столетова		https://m.edsoo.ru/ff0cffc 4
42	Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта. «Красная граница» фотоэффекта	1	Библиотека ЦОК https://m.edsoo.ru/ff0d01 5e
43	Давление света. Опыты П. Н. Лебедева. Химическое действие света	1	Библиотека ЦОК https://m.edsoo.ru/ff0d04 a6
44	Технические устройства и практическое применение: фотоэлемент, фотодатчик, солнечная батарея, светодиод	1	
45	Решение задач по теме «Элементы квантовой оптики»	1	Библиотека ЦОК https://m.edsoo.ru/ff0d03 02
46	Модель атома Томсона. Опыты Резерфорда по рассеянию α-частиц. Планетарная модель атома	1	Библиотека ЦОК https://m.edsoo.ru/ff0d09 1a
47	Постулаты Бора	1	Библиотека ЦОК https://m.edsoo.ru/ff0d0a fa
48	Излучение и поглощение фотонов при переходе атома с одного уровня энергии на другой. Виды спектров	1	Библиотека ЦОК https://m.edsoo.ru/ff0d0a fa
49	Волновые свойства частиц. Волны де Бройля. Корпускулярно-волновой дуализм. Спонтанное и вынужденное излучение	1	Библиотека ЦОК https://m.edsoo.ru/ff0d0c a8
50	Открытие радиоактивности. Опыты	1	Библиотека ЦОК

	Резерфорда по определению состава радиоактивного излучения					https://m.edsoo.ru/ff0d0f d2
51	Свойства альфа-, бета-, гамма-излучения. Влияние радиоактивности на живые организмы	1				
52	Открытие протона и нейтрона. Изотопы. Альфа-распад. Электронный и позитронный бета-распад. Гамма-излучение	1				Библиотека ЦОК https://m.edsoo.ru/ff0d11 62
53	Энергия связи нуклонов в ядре. Ядерные реакции. Ядерный реактор. Проблемы, перспективы, экологические аспекты ядерной энергетики	1				Библиотека ЦОК https://m.edsoo.ru/ff0d13 56
54	Элементарные частицы. Открытие позитрона. Методы наблюдения и регистрации элементарных частиц. Круглый стол «Фундаментальные взаимодействия. Единство физической картины мира»	1				Библиотека ЦОК https://m.edsoo.ru/ff0d0e 38
55	Вид звёздного неба. Созвездия, яркие звезды, планеты, их видимое движение. Солнечная система	1				
56	Солнце. Солнечная активность. Источник энергии Солнца и звезд	1				
57	Звезды, их основные характеристики. Звезды главной последовательности. Внутреннее строение звезд. Современные представления о происхождении и эволюции Солнца и звезд	1				

58	Млечный Туть — наша Галактика. Положение и движение Солнца в Галактике. Галактики. Чёрные дыры в ядрах галактик	1				
59	Вселенная. Разбегание галактик. Теория Большого взрыва. Реликтовое излучение. Метагалактика	1				
60	Нерешенные проблемы астрономии	1				
61	Контрольная работа №4 по теме «Элементы астрономии и астрофизики»	1	1			
62	Обобщающий урок. Роль физики и астрономии в экономической, технологической, социальной и этической сферах деятельности человека	1				
63	Обобщающий урок. Роль и место физики и астрономии в современной научной картине мира	1				
64	Обобщающий урок. Роль физической теории в формировании представлений о физической картине мира	1				
65	Обобщающий урок. Место физической картины мира в общем ряду современных естественнонаучных представлений о природе	1				
66	Резервный урок. Магнитное поле. Электромагнитная индукция	1				
67	Резервный урок. Оптика. Основы специальной теории относительности	1				

68	Резервный урок. Квантовая физика. Элементы астрономии и астрофизики	1				Библиотека ЦОК https://m.edsoo.ru/ff0d17 84
,	Е КОЛИЧЕСТВО ЧАСОВ ПО РАММЕ	68	4	7		

СИСТЕМА ОЦЕНКИ ДОСТИЖЕНИЯ ОБУЧАЮЩИМИСЯ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ НА УРОВНЯХ ОСНОВНОГО ОБЩЕГО И СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ УЧЕБНЫЙ ПРЕДМЕТ «ФИЗИКА»

В соответствии с требованиями федеральных государственных образовательных стандартов общего образования оценка учебных достижений по физике, как и по другим учебным предметам, реализует системно деятельностный, уровневый и комплексный подходы. Планируемые результаты по физике можно объединить в несколько групп: 1) освоение понятийного аппарата (использование понятий, распознавание явлений, описание явлений при помощи физических величин, использование законов для характеристики процессов, работа с моделями); 2) формирование методологических умений (освоение методов научного познания, проведение опытов по наблюдению физических явлений, проведение прямых и косвенных измерений, исследований зависимостей физических величин, соблюдение правил безопасного труда при работе с лабораторным оборудованием); 3) решение качественных и расчетных задач (объяснение явлений и процессов, применение теоретического материала для решения задач); 4) понимание прикладного значения полученных знаний (умения приводить примеры практического использования физических знаний в повседневной жизни, характеризовать принципы действия изученных приборов, технических устройств и технологических процессов, распознавать физические явления в окружающей

жизни); 5) умение работать с информацией физического содержания (критически анализировать информацию, получаемую из разных источников, формулировать и аргументировать собственную позицию). Учителю на основании предложенного в ФРП перечня предметных результатов необходимо сформировать тематические планируемые результаты для каждой темы и внутри каждого результата составить перечень умений, формирование которых в совокупности обеспечивает достижение планируемого результата и служит основой для подбора заданий оценочных процедур. 18 Виды внутришкольного оценивания На всех уровнях общего образования выделяют две большие группы оценивания: внутреннее (внутришкольное) оценивание и внешнее оценивание (государственная итоговая аттестация, всероссийские проверочные работы, мониторинговые исследования федерального, регионального уровней). Внутришкольное оценивание предназначается для организации процесса обучения в классе по учебным предметам и регулируется локальными актами образовательной организации. К видам внутришкольного оценивания предметных результатов освоения образовательных программ относятся: – стартовая диагностика, направленная на оценку общей готовности обучающегося к обучению на данном уровне образования; – текущее оценивание, отражающее индивидуальное продвижение обучающегося в освоении программы учебного предмета; – тематическое оценивание, направленное на выявление и оценку достижения образовательных результатов, связанных с изучением отдельных тем образовательной программы; – промежуточное оценивание по итогам изучения крупных блоков образовательной программы, включающей несколько тем, или по формированию комплексного блока учебных действий; – итоговое оценивание результатов освоения образовательной программы за учебный год. Одна из существенных задач текущего и тематического контроля – подготовка обучающихся к промежуточной и итоговой оценке (за четверть, полугодие, в конце учебного года). В данных рекомендациях речь идет о текущем оценивании. Текущее оценивание Текущая оценка включает периодические процедуры оценки индивидуального продвижения обучающегося в освоении программы учебного предмета «Физика». Результаты текущей оценки являются основой 19 для индивидуализации учебного процесса. Текущая

оценка может быть формирующей, поддерживающей и направляющей усилия обучающегося, включающей его в самостоятельную оценочную деятельность, и диагностической, способствующей выявлению и осознанию учителем и обучающимся существующих проблем в обучении. Текущее оценивание может проводиться на каждом уроке и выявлять достижения отдельных обучающихся в процессе изучения учебного материала. В текущей оценке используются различные формы и методы проверки (устные и письменные опросы на уроках, кратковременные самостоятельные работы, домашние работы, индивидуальные и групповые проектные и исследовательские работы, само- и взаимооценка, рефлексия, оценочные листы и другие) с учетом особенностей учебного предмета «Физика» и методики преподавания, реализуемой учителем. Для установления уровня освоения обучающимися каждой темы курса проводится тематическая диагностика (оценка). Диагностика – способ получения измеряемых показателей обучения, обеспечивающих объективное и всестороннее изучение условий и результатов учебного процесса, способ прояснения всех изменений, которые происходят в познавательном процессе. Оценивание устного опроса В ФРП по учебному предмету «Физика» перечислены все предметные результаты, которые должны быть освоены и которые выносятся на тематический и итоговый контроль, в том числе и на государственную итоговую аттестацию. Использование научных понятий, изученных физических величин и законов оценивается в процессе описания и характеристики свойств тел и физических явлений. В рамках текущей проверки целесообразно для всех вновь вводимых формул и законов обращать внимание на: – понимание физического смысла используемых величин, их обозначения и единицы физических величин; – понимание словесной формулировки закона, сути закономерности, выраженной формулой; - знание математического выражения закона, формул, связывающих данную физическую величину с другими величинами; умение строить графики изученных зависимостей физических величин. В рамках устного опроса в практике учителя физики широко применяются «карточки» физической величины, физического закона, физического прибора или устройства и т.д., которые являются для обучающегося своего рода инструкцией (планом) для построения полного ответа.

Критерием оценки и перевода в отметку устного ответа может служить наличие и правильность этих элементов, обозначенных в плане. Отметка «5» выставляется за верное представление всех элементов, входящих в план ответа. Отметка «4» выставляется, соответственно, при наличии неточности в одном из элементов ответа или при отсутствии одного из элементов.

Нижняя граница отметки «3» соответствует устному ответу, в котором верно представлено не менее 60% элементов от полного ответа. Отметка «2» выставляется, если обучающийся не раскрывает основное содержание материала (представлено менее 60% элементов от полного ответа). Аналогичные критерии можно использовать для оценивания кратковременных конкретных письменных заданий при организации работы с материалом учебника. Оценивание письменного опроса На базе освоенных знаний (величин, формул, законов) целесообразно предложить письменные задания с кратким ответом на описание и характеристику свойств тел и физических явлений. Таких заданий базового и повышенного уровней сложности в имеющемся арсенале дидактических средств достаточно много (задания с кратким ответом в виде цифры или числа, на множественный выбор, на соответствие элементов двух множеств, на заполнение пропусков). Наиболее распространенными являются задания на вычисление величины в различных ситуациях, которые проверяют умения использовать различные формулы и законы в стандартных учебных ситуациях. В качестве следующего шага учителю необходимо подобрать задания, построенные на контексте жизненной ситуации. Рекомендуется использовать контекстные задания по работе с графиком, таблицей или схемой, которые параллельно с предметными умениями предполагают формирование и оценку универсальных учебных действий (УУД) по работе с информацией: чтение и понимание информации (например, нахождение значений величин по графику), понимание и интерпретация информации (например, соотнесение участков графиков с физическими

процессами, которые они отражают, определение характера изменения величин на отдельных участках графика, преобразование информации из таблицы в график и т. д.) и применение графической информации в измененной или новой ситуации. Для оценивания умений выполнять задания на описание и характеристику свойств тел и физических явлений целесообразно проводить кратковременные проверочные тестовые работы, содержащие базового и повышенного уровней сложности. Количество заданий в работе зависит от типа включенных заданий и от времени, отводимому на выполнение теста. Например, для работы на 15 минут это могут 22 быть 3-4 задания базового уровня сложности с кратким ответом в виде числа или на соответствие и 2 задания повышенного уровня сложности на множественный выбор. Примерная шкала перевода балла в отметку (разрабатывается в образовательной организации): нижний порог отметки «5» соответствует получению не менее 80% от максимально возможного балла; нижний порог отметки «4» соответствует получению не менее 60% от максимально возможного балла; нижний порог школьной отметки «3» определяется баллом, соответствующим выполнению заданий базового уровня сложности не менее чем на 60%; отметка «2» соответствует выполнению менее чем 60% заданий базового уровня сложности. Одним из важнейших результатов обучения физике является решение качественных и расчетных задач. Решения качественных задач представляют собой рассуждения, состоящие из ряда связанных друг с другом причинноследственными связями утверждений, которые подкрепляются ссылками на свойства явлений, формулы и законы. Решение расчетных задач – также запись логически связанных утверждений, но представленных в виде формул, математических преобразований и вычислений. Критерии оценивания качественных задач должны базироваться на выделении следующих элементов решения: 1) обоснование ответа, состоящее из нескольких логических шагов с указанием на свойства явлений, формулы или законы, которые подтверждают высказанное утверждение; 2) указание на свойства явлений, формулы или законы, которые подтверждают высказанное утверждение; 3) ответ на поставленный в задаче вопрос. Поскольку полное объяснение предполагает построение не менее 2–3 логических шагов с опорой на не менее 2–3 изученных свойства

физических явлений, физических законов или закономерностей, то при оценивании 23 целесообразно выделять в решении качественных задач полностью верное решение, которое содержит все необходимые элементы, и частично верное решение, которое оценивается по принципу вычитания баллов за отсутствующие необходимые элементы полного обоснования. При оценивании решения качественных задач рекомендуется использовать обобщенные критерии оценивания таких заданий в КИМ ОГЭ (на уровне основного общего образования) и КИМ ЕГЭ (на уровне среднего общего образования) по физике. Критерии оценивания расчетных задач основываются на общепринятом в методике обучения физике плане решения расчетных задач, который включает следующие элементы: 1) работа с условием задачи: запись «Дано», включая данные из условия задачи и справочные величины, необходимые для решения задачи; 2) обоснование физической модели: представление рисунка, если это необходимо для понимания физической ситуации, указание на то, какие явления или процессы рассматриваются, какие закономерности можно использовать для решения задачи и чем можно пренебречь, чтобы ситуация отвечала выбранной модели; 3) запись всех необходимых для решения задачи законов и формул; 4) проведение математических преобразований и расчетов, получение ответа; 5) проверка ответа одним из выбранных способов (например, с учетом проверки единиц измерения величин). Решение расчетной задачи оценивается по письменному ответу. Как правило, все пункты, кроме обоснования модели, входят в письменное решение и обязательно требуются от обучающихся при решении любых задач. А анализ условия задачи, выбор модели и необходимых уравнений обычно проговаривается только устно. При этом при повторении однотипных задач его многократно не озвучивают, и у обучающихся не вырабатывается умение проводить полный анализ физических процессов и обосновывать выбор законов и формул. Поэтому для текущего оценивания целесообразно и этот пункт включать в письменный ответ хотя бы в виде небольших комментариев. 24 При оценивании письменных решений расчетных задач рекомендуется по возможности на всех этапах использовать обобщенные критерии оценивания таких заданий в КИМ ОГЭ (на уровне основного общего образования) и КИМ ЕГЭ (на уровне среднего общего

образования) по физике. Следует обратить внимание, что согласно обобщенным критериям ГИА расчетная задача не считается решенной, если отсутствует запись всех необходимых для решения задачи законов и формул. Уровень сложности расчетных задач зависит от того, предполагает ли решение использование формул и законов из одной или нескольких тем данного раздела, из одного или двух разделов школьного курса физики, от использования явно или неявно заданной модели. Для определения уровня сформированности у обучающихся умений решать расчетные задачи при изучении каждой темы рекомендуется проводить самостоятельные работы, задания которой включают расчетные задачи разного уровня сложности. Самостоятельные работы могут служить удобным инструментом текущего оценивания: результаты выполнения заданий работы позволят проанализировать для каждого обучающегося текущий уровень освоения того или иного предметного результата. Тематическая контрольная работа может одновременно включать задания на описание и характеристику свойств тел и физических явлений, качественные и расчетные задачи разного уровня сложности, и оценивать по совокупности уровень освоения группы предметных результатов на содержании изучаемой темы. При оценивании результатов выполнения самостоятельных или тематических работ рекомендуется использовать следующие подходы при переводе первичного балла за выполнение работы в отметку: нижний порог отметки «5» соответствует выполнению всей работы не менее чем на 80%; нижний порог отметки «4» соответствует выполнению всей работы не менее чем на 60%; нижний порог отметки «3» определяется баллом, соответствующим выполнению заданий базового уровня сложности не менее чем на 60%; 25 отметка «2» соответствует выполнению менее чем 60% заданий базового уровня сложности. Критерии оценивания сформированности методологических умений В блоке предметных результатов, связанном с формированием методологических умений, можно выделить две части: теоретическое освоение методов научного познания и формирование экспериментальных умений. Теоретическое освоение методов научного познания предполагает формирование умений: – распознавать проблемы, которые можно решить при помощи физических методов; – формулировать гипотезу или цель описанного исследования; –

планировать опыт с учетом измерения изменяемых величин и обеспечения неизменности остальных параметров; – выбирать оборудование и измерительные приборы, – оценивать правильность порядка проведения исследования; – оценивать достоверность результатов измерений; – интерпретировать результаты опыта, представленные в виде таблицы или графиков; – формулировать обоснованные выводы на основе представленных результатов. Оценивание достижения этого результата проводится при помощи разнообразных заданий теоретического характера, которые строятся на описании различных измерений и опытов. Для проверки освоения теоретических знаний об эмпирических методах научного познания рекомендуется в текущее оценивание и тематические проверочные работы включать блоки заданий из банков по оценке естественно-научной грамотности. В данном случае следует отбирать те блоки заданий (или группы заданий из блоков), которые ориентированы на проверку понимания особенностей естественно-научного исследования. Задания в этих банках строятся на ситуациях жизненного характера, не повторяют материал учебника и позволяют оценить сформированность соответствующих умений на уровне переноса знаний в незнакомую ситуацию. Для оценивания сформированности 26 умений выполнять задания на теоретическое освоение методов научного познания целесообразно проводить кратковременные проверочные тестовые работы, содержащие задания базового и повышенного уровней сложности. Количество заданий в работе зависит от типа включенных заданий, объема контекста и времени, отводимому на выполнение работы. Примерная шкала перевода балла в отметку (разрабатывается в образовательной организации): нижний порог отметки «5» соответствует получению не менее 80% от максимально возможного балла; нижний порог отметки «4» соответствует получению не менее 60% от максимально возможного балла; нижний порог школьной отметки «3» определяется баллом, соответствующим выполнению заданий базового уровня сложности не менее чем на 60%; отметка «2» соответствует выполнению менее чем 60% заданий базового уровня сложности. При изучении физики особую роль играют лабораторные и практические работы, выполняемые на реальном оборудовании. Предметные результаты по физике в части формирования экспериментальных

умений предусматривают освоение обучающимися обобщенных представлений об использовании методов научного познания в самостоятельной деятельности: – наблюдение явлений и постановка опытов по обнаружению факторов, влияющих на протекание данного физического явления/процесса; - проведение прямых и косвенных измерений; - исследование зависимости одной физической величины от другой с представлением результатов в виде графика или таблицы; – проверка заданных предположений (прямые измерения физических величин и сравнение заданных соотношений между ними). Во главу угла ставится освоение обучающимися обобщенных планов проведения исследования: постановка цели экспериментального исследования; выбор способа измерения, адекватного поставленной задаче; определение достоверности полученного результата на основании простейших методов оценки погрешностей измерений. 27 В учебном процессе оценивание выполнения обучающимися лабораторных работ складывается из двух составляющих: - собственных наблюдений учителя за ходом работы; – проверки заполнения письменного отчета о лабораторной работе. В рамках наблюдения за ходом работы оцениваются процедурные умения: сборка экспериментальной установки, соблюдение плана проведения измерения опыта, правильность снятия показаний измерительных приборов, соблюдение правил безопасного труда при работе с лабораторным оборудованием. При фронтальном выполнении лабораторной работы учитель может фиксировать недочеты в деятельности обучающихся, которые затем влияют на оценку работы. Кроме этих предметных умений целесообразно проводить оценку регулятивных универсальных учебных действий (планирование работы, следование плану и коррекция действий и т. п.), а также коммуникативных умений в части межличностного общения, поскольку лабораторные работы, как правило, выполняются в парах. Здесь можно обращать внимание на особенности возникновения конфликтов и их разрешение, корректность общения обучающихся друг с другом. В письменном отчете основные элементы оценивания – это рисунок или описание экспериментальной установки, запись прямых измерений с учетом абсолютной погрешности, график, если он предусмотрен характером работы, и формулировка вывода по результатам опытов. Таким образом, итоговая отметка за

выполнение лабораторной работы складывается из результатов наблюдений за процессом ее выполнения, а также оценки письменного отчета, в котором должны быть представлены данные измерений и сделаны выводы. Критерии оценивания письменного отчета формулируются учителем строго в соответствии с предлагаемой инструкцией по выполнению экспериментального задания. При этом «балльный вес» критериальной позиции, связанной с правильностью прямых измерений, должен быть существенно выше. Таким образом, при оценивании экспериментальных заданий, выполняемых на реальном оборудовании, основной акцент делается на формирование умения проводить прямые измерения. При оценивании выполнения экспериментальных заданий на проведение косвенных измерений и исследование зависимостей физических величин целесообразно использовать обобщенные критерии КИМ ОГЭ по физике.

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА

- Физика, 10 класс/ Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. под редакцией Парфентьевой Н.А., Акционерное общество «Издательство «Просвещение»
- Физика, 11 класс/ Мякишев Г.Л., Буховцев Б.Б., Чаругин В.М. под редакцией Парфентьевой Н.А., Акционерное общество «Издательство «Просвещение»

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ

Тулькибаева Н.Н.,Пушкарев А.Э. Методические рекомендации к учебникам Г.Я. Мякишева, Б.Б. Буховцева, Н.Н. Сотского «Физика. 10 класс» и «Физика. 11 класс»

Шилов В. Ф. Физика: 10—11 кл.: поурочное планирование: пособие для учителей. М.: Просвещение, 2020

Буров В.А., Зворыкин Б.С. и др. Физический экспиремент в школе. 1971 г. Н.И.Гольдфарб. Сборник вопросов и задач по физике. М.: «Высшая школа», 1982 г.

И.М. Гельфгат, Л.Э. Генденштейн, Л.А. Кирик. 1001 задача по физике. М.: «Илекса», 2007 г

ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ

http://www.physics.ru/ открытый колледж, физика

http://elementy.ru/physics энциклопедия физики

https://4ege.ru/video-fizika/https://4ege.ru/video-fizika/

https://school.infourok.ru/videouroki?predmet=fizika

ysclid=lmw51sfqrw169827261- видеоуроки от проекта «ИНФОУРОК»

https://resh.edu.ru/tv-program/archive/11/28 - видеоуроки, Российская

электронная школа